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Evidence for the existence in the nearshore surf zone of energetic alongshore prop- 
agating waves with periods O(100 s) and wavelengths O(100 m) was found from 
observations by Oltman-Shay et aE. (1989). These oscillations have wavelengths that 
are much too short to be surface gravity waves at the observed frequencies. The 
existence and properties of the wave-like motions were found to be related to the 
presence, strength and direction of an alongshore current in the surf zone. Based on 
a linear stability analysis of a mean alongshore current with offshore scale O( 100 m), 
Bowen & Holman (1989) described these fluctuations as unstable waves associated 
with a shear instability. Good agreement of wavelengths and wave speeds from obser- 
vations and from predictions based on the most unstable linear mode was obtained 
by Dodd et al. (1992). The nonlinear dynamics of finite-amplitude shear instabil- 
ities of alongshore currents in the surf zone are studied here utilizing numerical 
experiments involving finite-difference solutions to the shallow water equations for 
idealized forced dissipative initial-value problems. Plane beach (i.e. constant slope) 
geometry is used with periodic boundary conditions in the alongshore direction. Forc- 
ing effects from obliquely incident breaking surface waves are approximated by an 
across-shore-varying steady force in the alongshore momentum equation. Dissipative 
effects are modelled by linear bottom friction. The solutions depend on the dimen- 
sionless parameter Q, which is the ratio of an advective to a frictional time scale. The 
steady frictionally balanced, forced, alongshore current is linearly unstable for Q less 
than a critical value Qc. The response of the fluid is studied for different values of 
AQ = Qc -Q. In a set of experiments with the alongshore scale of the domain equal to 
the wavelength 271/k0 of the most unstable linear mode, disturbances that propagate 
alongshore in the direction of the forced current with propagation velocities similar 
to the linear instability values are found for positive AQ. The disturbances equilibrate 
with constant amplitude for small AQ and with time-varying amplitudes for larger 
AQ. For increasing values of AQ the behaviour of this fluid system, as represented in 
a phase plane with area-averaged perturbation kinetic energy and area-averaged en- 
ergy conversion as coordinates, is similar to that found in low-dimensional nonlinear 
dynamical systems including the existence of non- trivial steady solutions, bifurcation 
to a limit cycle, period-doubling bifurcations, and irregular chaotic oscillations. In 
experiments with the alongshore scale of the domain substantially larger than the 
wavelength of the most unstable linear mode, different behaviour is found. For small 
positive AQ, propagating disturbances grow at wavelength 2n/kg. If AQ is small 
enough, these waves equilibrate with constant or spatially varying amplitudes. For 
larger AQ, unstable waves of length 271/k0 grow initially, but subsequently evolve into 
longer-wavelength nonlinear propagating steady or unsteady wave-like disturbances 
with behaviour dependent on AQ. The eventual development of large-scale nonlinear 
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propagating disturbances appears to be a robust feature of the flow response over 
plane beach geometry for moderate, positive values of AQ and indicates the possible 
existence in the nearshore surf zone of propagating finite-amplitude shear waves with 
properties not directly related to results of linear theory. 

1. Introduction 
Evidence for the existence in the nearshore surf zone of highly energetic alongshore 

propagating waves with periods O( 100 s) and wavelengths O( 100 m) was found 
from current measurements made as part of the SUPERDUCK experiment in October 
1986 at Duck, NC by Oltman-Shay, Howd & Birkemeier (1989). These oscillations 
have alongshore wavelengths that are much too short to be surface gravity waves at 
the observed frequencies. The existence and properties of the wave-like motions are 
found to be related to the presence, strength and direction of an alongshore current 
in the surf zone. In particular, the waves exist only when an alongshore current is 
present and they propagate in the direction of the current at a velocity less than, 
but similar to, the maximum current velocity. The fluctuations are characterized by 
a linear relation between frequency and alongshore wavenumber typical of linear 
non-dispersive waves. Based on an inviscid linear stability analysis of an idealized 
alongshore current with offshore scale O(lO0 m), Bowen & Holman (1989) attributed 
these fluctuations to unstable waves associated with a shear instability. Dodd, Oltman- 
Shay & Thornton (1992) obtained good agreement of wavelengths and wave speeds 
from observations and from theoretical predictions based on the most unstable mode 
from a linear stability analysis utilizing realistic estimates of mean currents and 
beach bottom topography and including bottom friction effects. Additional studies 
concerning the applicability of results from linear stability analysis to the problem 
have been reported by Dodd & Thornton (1990), Dodd (1994) and Falqubs & Iranzo 
( 1994). Some preliminary results on the finite-amplitude behaviour of these shear 
instabilities have been obtained by Dodd & Thornton (1992) using weakly nonlinear 
theory and by Falques, Iranzo & Caballeria (1994) and Deigaard et al. (1994) using 
numerical model experiments. 

Several obvious fluid mechanical questions remain unanswered. If the observed 
motions are related to a shear instability, why does the instability not grow so 
that the flow breaks down into vortices and loses wave-like properties? Why are the 
observed wavelike properties so robust and so similar to linear waves if the mechanism 
involves an instability? Does an equilibration mechanism exist that stabilizes these 
waves at finite-amplitude? What is the nature of the finite-amplitude nonlinear 
behaviour and how does it depend on the forcing, the frictional dissipative process, 
and the beach geometry? We attempt to answer some of these questions by pursuing 
a study utilizing numerical, finite-difference solutions to the shallow-water equations 
for idealized problems in simple geometry. 

It is relevant to note that the observations of Oltman-Shay et al. (1989) are for 
conditions where the beach bottom topography is characterized by the presence of a 
sand bar parallel to the shore. It seems most sensible for initial model studies, however, 
to utilize the simplest possible relevant bottom topography which is provided by a 
plane beach of constant slope. We use plane beach topography here to investigate 
first the finite-amplitude instability processes in simple geometry. One consequence 
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FIGURE 1 .  Schematic of model geometry showing the computational domain and the function 

Vs(x) (2 .13)  with n = 3 (heavy line) and with n = 6 (light line) used in the forcing (2.13~~). 

of this, however, is that restraint must be exercised in attempting direct, quantitative 
comparisons of model results with observations from the su PERDUCK experiment. 

The outline of the paper is as follows. The problem formulation is described in 
$2. Information from a linear stability analysis of alongshore currents relevant to the 
numerical experiments is included in $3. Results from three different sets of numerical 
experiments are presented in $94, 5, and 6 and a summary is given in $7. 

2. Formulation 
Numerical experiments involving finite-difference solutions to the shallow-water 

equations for idealized forced dissipative initial-value problems are utilized to study 
the nonlinear dynamics associated with shear instabilities of alongshore currents in 
the surf zone. We deliberately select the simplest fluid dynamical system that retains 
the essential physics of this problem. Plane beach (i.e. constant slope) geometry, peri- 
odic in the alongshore direction and bounded offshore of the region of interest by a 
vertical wall, is utilized (see figure I ) .  Forcing effects from obliquely incident breaking 
surface waves are approximated by a steady body force in the alongshore momentum 
equation. Dissipation is modelled by linear bottom friction. Weak biharmonic friction 
is also included to provide additional dissipation at high wavenumbers in the numer- 
ical finite-difference solutions. The rigid-lid approximation, discussed further below, 
is also invoked. 

The governing equations are 

(hu)x + (ho),  = 0, (2.la) 
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ut + UU, + U U ~  = -p,/po - p / h  - v V ~ U ,  (2 . lb)  

vt + uv, + vv), = -p4'/po - y[v - V ] / h  - v V 4 q  ( 2 . k )  

where Cartesian coordinates (x, y) arc aligned across-shore and alongshore, respec- 
tively, with x = 0 at the coast, t is time, ( u , ~ )  are velocity components in the (x,y) 
directions, p is pressure, po is the constant fluid density, h = h(x )  is the depth, ,LL is 
a bottom friction coefficient, and v is a biharmonic diffusion coefficient. The applied 
body force per unit volume in ( 2 . 1 ~ )  has been expressed as 9 = popV(x ,y ) /h ,  so 
that with V = Vs(x) and v = 0 the steady, forced, frictionally balanced currents are 
zi = Vs(x) ,  u = 0. Subscripts (x, y, t )  denote partial differentiation. 

Dimensionless variables are formed using the characteristic scales (L,  ho, VsM)  for, 
respectively, a horizontal length scale, a depth scale, and a velocity. The characteristic 
time scale t~ = L/VbM. The Characteristic velocity VsM is related to the magnitude 
of the forcing based on scaling appropriate for a steady, y-independent, forced flow 
balanced by bottom friction and is chosen equal to the maximum absolute value 
of Vs(x). It is natural to choose the characteristic horizontal length scale L as the 
across-shore distance from the coast to the x position where Vs(x = L )  = V s M  and 
the characteristic depth as ho = h(x = L). With dimensionless variables denoted by 
stars, we have 

(x,y) = (X*,Y*)L, t = f*L/VS,M, h = h*ho, 

( u , v )  = ( U * , U * ) V S M ,  p = p*po& V = V*VS,. 
The equations (2.1) in dimensionless variables (dropping the stars) are 

(hU)y + (hv), = 0. 

U t  + UU, + V U )  = -py - Qu/h  - RP1V4u, 

v1 + uv, + vo4 = -pv  - Q[v  - V ] / h  - R - ' V 4 v ,  

Q = P L / ( V S M ~ O )  , 
R-' = \ I / (  Vs,ML'). 

where 

In general, we consider 

R-' << 1,  

(2.2a-c) 

(2.2d-f) 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

(2.4) 

(2.5) 

(2.6) 
so that Q is the primary dimensionless parameter upon which the solutions depend. 
Note that Q represents the ratio of an advective time scale L/VsM to a bottom friction 
time scale Izo/y. For a plane beach, the ratio ho/L in Q is the beach slope. 

The rigid-lid approximation is utilized based on the assumption that the charac- 
teristic time scale is the advective scale tc = L/VS,v and on the scaling estimate 
that 

V,2, << gho, (2.7) 
where g is the acceleration due to gravity (e.g. Bowen & Holman 1989; Dodd & 
Thornton 1990). The condition (2.7) is reasonably well satisfied for alongshore currents 
in the surf zone where typical scale values are VsM w 1 m s-' and 110 N 3 - 5 m. 

The numerical experiments reported here arc performed using dimensional vari- 
ables. The dynamical similarity indicated by the dimensionless equations (2.3) and the 
dependence on the dimensionless parameters Q and R-' can be recovered, of course, 
by rescaling (Appendix A). Henceforth, we use (2.1) and dimensional variables. 
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hu = -ylY, hv = yX.  (2.8a, h)  

In addition, an equation for the potential vorticity q ,  where 

q = i /h ,  i = v x  - u y  9 (2.9a, 6) 

and where i is the vertical component of the vorticity, may be derived from (2.1): 

Yt + uqx + uq,  = (P/h) (V/h)x  - (p/h)[(u/h)x  - (u/h),I - ( v / 4 V 4 i .  (2.10) 

4t+uqx+vqy  = o ,  (2.1 1) 

In the absence of forcing (V = 0) and friction ( p  = v = 0), (2.10) reduces to 

which implies that q is conserved on fluid particles. 
The equations (2.la,b,c) are solved numerically using finite-difference approxima- 

tions. The numerical methods are discussed in Appendix B. The geometry for the 
numerical experiments is shown in figure 1. The (x ,y )  dimensions of the domain are 
(L("',L(J)). The flow is assumed to be periodic in the alongshore direction y with 
period L@). The boundary conditions in x correspond to no-normal flow 

u = o at x = o,L'"), (2.12a) 

and to free-slip for the biharmonic momentum diffusion, 

u, = v, = u,, = o at x = o,L(") (2.12b) 

We choose L(') large enough so that the behaviour of the flow is not influenced 
by the finite domain size in x. For the numerical experiments reported here, we fix 
L(') = 1000 m and h = 0.05~. For the forcing, we assume 

V ( X , Y )  = Vs(4(1 + W)) > (2.13~) 

with 
vS(x) = cox2 exp[-(x/a)"] , (2.13 b)  

where n = 3 or n = 6. The constants Co and CI are chosen so that the maximum 
magnitude of Vs is VsM = 1 m sP1 at x = L = 90 m (figure I). As a result, 
h(x = L)  = ho = 4.5 m. The function 

J 

eb(y)  = e b, cos(2zjy/L(-')), (2.13 c) 

where 6 << 1, is added to the forcing in some experiments to provide weak pertur- 
bations at alongshore wavenumbers 2nj/L()'), j = 1, ..., J .  The alongshore scale of the 
domain L( ' )  is chosen to be equal to a multiple of the wave length 271/k0 of the most 
unstable linear mode for the basic flow v = vy(x) (§3), i.e. 

L(J') = m(2n/ko), (2.14) 

where m is an integer m 3 1. We also fix v = 10 m4 s-*, so that R-' = 1.37 x 
The magnitude of the bottom friction coefficient p is varied over a range applicable 

to oceanographic conditions (e.g. Dodd et al. 1992; Dodd 1994) in different experi- 
ments with fixed values for V S ( X )  and I,("). With the other parameters held constant, 
Q = pL/(Vs,h~) = 20p and the variation of p (m s-I) may be interpreted in terms 
of the variation of the dimensionless parameter Q (Appendix A). The forcing vy(x) 

J=1 
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(2.13b) is chosen to satisfy VS(X + m) - 0 and VS(X = 0) = 0 (with VsJh  finite at 
x = 0) and to have a single maximum value. Although the functional form of Vs(x) 
shown in figure 1 is fixed by (2.13b), we emphasize that the particular values chosen 
for the maximum value VsM, the offshore scale L, and the beach slope ho /L  are not 
binding since these values may be changed and interpreted also as variations in the 
dimensionless parameter Q (Appendix A). 

For analysis of the results of the numerical experiments, it is useful to define an 
alongshore average and an area average as follows: 

(2.15a, b) 

and to decompose the velocity field such that 

u = z)+v', u = uI ,  (2.16a, b)  

where, with h = h(x) and periodicity in y, (2 .1~)  implies ii = 0. 
The area-averaged equations for the energy in the alongshore-averaged flow and 

for the energy in the perturbations about the alongshore average derived from (2.1) 
with (2.15) and (2.16) are 

(2.17) J l  ,,hv -2 > t  = {(hU")iJ,} + p{Vsz)u) - p{D2} - v{hiw4v}, 

~~ 
- -  

{ ;h(d2 + d 2 ) > t  = -{(hU")Vx} + p { v " >  - p { p  + v"> - v{h(u'V4u' + u'V4u')). (2.18) 

It is clear from (2.17) and (2.18) that the term 

EC = -{(hUIUl)Uxijy), (2.19) 

represents energy conversion from the alongshore-averaged flow to the perturbations. 
The potential vorticity q may likewise be decomposed: 

- - 
q=4+q1,  4 = i / h ,  q ' = i ' / h ,  (2.2Ou-c) 

where 
I '  

- 

[ = v,, 5' = v ,  - uy . 
Equations for ij  and q' follow from (2.10): 

(2.20d, e) 

qt+(hu 'q ' ) , /h+(P/h)[ (v-  v s ) / h ] x + ( v / h ) V 4 r = 0 ,  (2.21) 

+ ( d h ) [ ( v ' l h ) x  - ( v l / N x  - (u'/h)J + (v/4V4i' = 0 ,  (2.22) 

(2.23) 

where 
_ _ -  
u'q; + 0'4;. = (u'v:),/h = (h@),/h. 

For flows with R-' << 1 that evolve such that ijt E 0, (2.21) reduces to 

(hu'ql), 1: -p [(. - I's)/h] x' (2.24) 

which implies that departures of 5 from V, are forced by the alongshore-averaged 
across-shore flux of perturbation potential vorticity. 
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3. Linear stability 
The linear stability of the basic alongshore current ZI = Vs(x)  is determined by 

standard procedures (e.g. Drazin & Reid 1981). For simplicity we assume here, based 
on (2.6), that I) = 0. The variables are expressed as 

u = E ,  v = v s + a ,  p = p, hii = -QY, hfi = 1?,,, (3.1 a-e) 

i s  = Vs,, 4s = is/h, 5 = i j x  - a y ,  q = m. (3.1.f, g) 
Substituting (3.1) in (2.10) and retaining linear terms, we obtain 

which provides a single equation for the perturbation streamfunction @. We consider 
solutions of (3.2) of the form 

Q = Re $(x) exp [ik(y - ct)] }, { (3.3) 

where $ and c may be complex (c = c, + icJ and where Re denotes the real part. The 
resulting equation for $ is 

The boundary conditions for (3 .4~)  follow from (2.12~) and are 

4 = o at x = 0 , ~ ' " ' .  (3.4b) 

The linear stability problem in this context for alongshore currents in the surf zone 
was first formulated for frictionless flow by Bowen & Holman (1989) with subsequent 
further analysis by Dodd & Thornton (1990). Characteristics of solutions to the linear 
stability problem with friction (3.4) using estimates of observed ocean currents for 
Vs and of corresponding beach bottom topography for h have been discussed and 
compared to observations by Dodd et al. (1992). Additional study of the applicability 
of linear stability analysis to the interpretation of oceanic observations is presented 
in Dodd (1994). 

Solutions to (3.4) are obtained numerically using finite-difference approximations 
as explained in Appendix B. The basic flow Vs(x) is given by (2.13h) with n = 3 or 
n = 6 (figure 1). These two functional forms for V are utilized as forcing functions in 
the numerical experiments. 

Results of the linear stability calculations in terms of growth rate kc, for the most 
unstable linear mode as a function of alongshore wavenumber k for different values 
of p are shown in figure 2. The propagation velocity c, as a function of k for ,u = 0 
is also shown. For VS with n = 3, we find in the frictionless limit p = 0 that the 
wavelength of the most unstable linear mode is approximately 2n/k0 = 450 m, with 
a growth rate of about 0.00139 sP1, which converts to a growth time scale of 12 
min. The corresponding propagation velocity c, = 0.65 m s-l which gives a period 
of 2n/(koc,) = 11.5 min. As p is increased, the maximum growth rate decreases and 
the wavelength 2n/k0  of the most unstable mode decreases slightly. The propagation 
velocities c, change little from the p = 0 values. For p 2 pc = 0.0095 (corresponding 
to Qc = 0.19), the flow is linearly stable. 

Compared to VS with n = 3,  the velocity profile V , ( x )  with YE = 6 has a substantially 
sharper fall-off in the offshore direction from the maximum at x = 90 m (figure 1). 
With n = 6, the resulting wavelength of the most unstable mode for p = 0 is 180 m, 
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FIGURE 2. Results of linear stability calculations for the basic flow u = Vs(x) with n = 3 and with 
n = 6 in terms of growth rate kci versus alongshore wavenumber k for different values of p (m SKI). 

Also shown is the propagation velocity c, versus k for p = 0. 

considerably shorter than the 450 m found with n = 3. The growth rate kc, is 
0.0043 s-I, which is larger than with y1 = 3 and which gives a growth time scale of 3.9 
min. The corresponding c, = 0.52 m s-l and period 2n/(koc,) = 5.8 min. The tendency 
for larger growth rates to result as the gradient in Vs(x)  offshore of the maximum is 
increased was noted in the initial studies of Bowen & Holman (1989). As ,u increases, 
the maximum growth rate decreases and, in this case, the corresponding wavelength 
27c/k0 increases slightly. Again, the values of c, remain similar to the p = 0 case. For 
p 2 ,uc = 0.0248(Qc = 0.50) the flow is linearly stable. 

4. Numerical experiments, n = 3, m = 1 
In the first set of experiments, we utilize forcing (2.13) with the n = 3 profile for 

Vs(x)  and with F = 0. The domain length in the alongshore direction is equal to 
the wavelength of the most unstable linear mode with ,u = 0, i.e. rn = 1 in (2.14) 
so that L(J') = 2n/ko = 450 m. The magnitude of the bottom friction coefficient ,u 
is varied while all other parameters are held constant as described in g2. The initial 
conditions consist of z, equal to the steady, frictionally balanced flow V)$(x),  plus 
small perturbations in u and v proportional to the most unstable linear mode at 
the corresponding value of p and 2n/k  = 450 m and scaled so that the maximum 
perturbation in (u2 + v2)'"' is 0.01 m s-l. 

Time series of the across-shore velocity u at x = 90 m, y = iL(J ' )  = 112.5 m from a 
set of experiments with different values of ,u are plotted in figure 3. For p = 0.01, the 
profile Vs(x )  is stable (figure 2) and we find u = 0. As ,u is decreased to p = 0.0075 
so that the basic flow is weakly unstable, regular oscillations in 24 are found with 
nearly constant amplitude for t > 10 h and with a period of about 13.3 min. These 
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FIGURE 3. Time series of the across-shore velocity componcnt u at x = 90 m, y = +Lo) = 112.5 m 
from experiments with different values of /i (m sP1) (n = 3, Lo') = 450 m). 

oscillations are associated with nonlinearly equilibrated disturbances of wavelength 
2 r / k  = L(Y) = 450 m propagating alongshore in the direction of the forced mean 
flow. The propagating character of the fluctuations is similar to that shown in figure 8 
(described in 5 5 ) .  The propagation velocity is about 0.57 m s-' which is close to 
the phase speed of the most unstable linear mode. The spatial variability of the 
disturbances is best illustrated by the vorticity ;-fields (figure 4) which for ,D = 0.0075 
show propagating disturbances of essentially constant form. A useful summary of 
the time variability of the flow is given by contour plots of the alongshore-averaged 
alongshore velocity D(x, t )  and the alongshore-averaged perturbation kinetic energy 
density :(." + p ) ( x ,  t )  shown in figure 5. The approximately equilibrated nature of 
the disturbances for t > 10 h is indicated by the non-zero and nearly constant values 

As ,D is decreased further, the character of the fluctuations in u (figure 3) changes. 
For ,u = 0.006, the oscillations in u are of larger magnitude and are modulated 
in amplitude in a regular manner on a longer time scale of about 3 hours. The 
high-frequency oscillations correspond to propagating disturbances where the prop- 
agation speed is lower for the larger amplitude fluctuations as seen from the slight 
increase in period. The changes with time of V(x, t )  and ;(." + .'2) in figure 5 show 
that the modulations of u(t) on the longer time scale (figure 3) are related to the 

of +(u'2+$). 
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p = 0.0075 p = 0.006 p = 0,0028 p = 0.001 

0 300 600 0 300 600 0 300 600 0 300 600 

x tm) x (m) x (m> x (m) 
FIGURE 4. Contour plots of the vorticity [-fields at times separated by 0.25 h from experiments with 
different values of p (m s-l) ( n  = 3, L(y) = 450 m), The zero contour is omitted. Solid (dashed) 
contour lines correspond to negative (positive) values. The contour interval A[ = 0.003 s-'. 

periodic production of perturbation kinetic energy as a result of finite-amplitude 
instability events. The increases of ;(,, + v'2) with time are accompanied by de- 
creases in magnitude and widening of V(x, t ) .  Bottom friction subsequently dissipates 
the perturbations so that ;($ + v'z) decreases, the forcing restores V(x, t ) ,  and the 
process repeats in a periodic manner. The nature of these instability events is further 
illustrated by the time-dependent behaviour of the vorticity field (figure 4) which 
shows disturbances periodically growing and then contracting in the offshore direc- 
tion. 

For p = 0.0028, the short-period oscillations in u (figure 3) are less regular and the 
frequency of the modulation is increased compared to the behaviour at p = 0.006. 
Again, the fluctuations propagate alongshore, with the larger ampljtude fluctuations 
propagating somewhat slower. The contour plots of B(x,t) and ;(d2 +$) in figure 5 
show that the cycle of instability events involving production and subsequent dissipa- 
tion of perturbation kinetic energy and the corresponding weakening and recovery of 
D(x, t )  has increased in frequency. It appears that although the instability events that 
occur about every 1.75 hours are similar, the process is very close to periodic over 
two instability events with a period of about 3.5 hours. That aspect of the flow will 
be discussed further below. The vorticity fields show considerable deformation with 
time (figure 4) corresponding to a rather complicated shedding of vortices from the 
unstable jet during the instability events. 

As p is decreased further to p = 0.001, the oscillations in u (figure 3) become in- 
creasingly irregular, but still correspond to alongshore-propagating disturbances with 
alongshore scale L(Y) = 450 m and with somewhat similar, but smaller propagation 
speeds. The overall behaviour still consists of instabil9 events involving the produc- 
tion of bursts of perturbation kinetic energy ;(z + d2)  accompanied by changes in 
magnitude of V(x, t )  (figure 5) ,  but these events appear to occur on an irregular basis 
with variable intensity. The vorticity fields (figure 4) show wilder and morc extensive 
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FIGURE 5. Contour plots of alongshore-averaged alongshore velocity i i(x, t )  (upper figures) 
and the alongshore-averaged perturbation kinetic energy density !(." + ?)(x t )  (lower fig- 
ures) as a function of the across-shore coordinate ?I and time t from cxperiments with differ- 
ent values of ,u (m s-') (n = 3, Lo) = 450 m). The contour intervals are AU = 0.15 m s-', 
A!(? + v'z) = A = 0.002 m2 s-? for p = 0.0075 and A = 0.005 m2 sPz otherwise. 

eddy shedding during the instability events, with previously shed vortices extending 
farther offshore. 

In spite of the changes in flow characteristics as p is decreased in this set of 
experiments, the alongshore propagation characteristics given by the linear stability 
analysis remain a qualitatively robust feature of the response in the fully nonlinear 
regime. 

A further simplification in representing the flow behaviour is provided by examining 
the time variability of area-averaged quantities. It is of interest to construct a phase- 
plane representation with the area-averaged perturbation kinetic energy, 

KE' = i { h ( Z + ? ) } ,  

and the area-averaged energy conversion term EC (2.19) as coordinates. Since EC is 
the physically most important term on the right-hand side of (2.18), this is similar 
to plotting KE' versus K E : .  These plots are shown in figure 6 for a large set of 
experiments with different values of p. The initial transients are omitted and only 
the asymptotic large-time behaviour is shown. We see that the behaviour of the 
forced and frictional fluid dynamical processes in these experiments, as represented 
in this phase plane, is similar to that found in low-dimensional nonlinear dynamical 
systems. 

For p = 0.01, the forced alongshore flow is stable. We find u = 0 and K E '  = EC = 0. 
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FIGVRE 6. Phase-plane representation of the large-time behaviour from experiments with different 
values of ,u (m s-I) (n = 3, L(Y) = 450 m). The coordinates are the area-averaged perturbation 
kinetic energy KE' (4.1) and the area-averaged energy conversion term EC (2.19). Initial transients 
are omitted to clarify the large-time asymptotic behaviour. Limit cycles have been traced several 
times. 

The large-time state of this system in the (KE' ,EC)  phase plane is a steady solution 
represented by a point at the origin. For y = 0.0075, the system is asymptotic to a 
non-trivial steady solution with non-zero perturbation kinetic energy, corresponding 
to the steadily propagating disturbances seen in figures 3 and 4, and with non-zero 
energy conversion. That steady solution is represented in the (KE ' ,  E C )  phase plane 
by a point at (0.0025, 0.7 x The steady, non-zero energy conversion EC is 
balanced in (2.18) by frictional dissipation so that KEE = 0. At y = 0.006, we find 
a simple limit cycle reflecting the periodic instability events shown in the U(x,t) and 
i(z + v'2) contour plots in figure 5. A more complicated limit cycle with period 
about T = 1.7 h occurs for p = 0.003 while at p = 0.0028 we find that the period 
of the limit cycle has approximately doubled to 3.5 h, i.e. to about 2T. That type of 
periodic behaviour for y = 0.0028 may be seen in the plots of i(GfU'2) (figure 5) as 
noted above. For y = 0.0027, we find that the period of the limit cycle has doubled 
again to 7.2 h which is approximately 4T. For y = 0.00269, we find a clear limit 
cycle with a period of 10.8 h which is about 6T. Additional calculations with p 
varied between 0.0027 and 0.00269 indicate a bifurcation from period 4T to 6T 
near y = 0.002693. The appearance of a period-6T limit cycle interrupts the period- 
doubling bifurcation sequence. At lower values of p ,  we see irregular behaviour that 
appears to be associated with a chaotic attractor that changes shape as p varies 
through the values 0.0025, 0.00175, 0.001. 

We see that, under the conditions of these experiments, this system undergoes the 
bifurcation sequence (T  --+ 2T -+ 4T + 6T) before exhibiting irregular oscillations. 
Consequently, the system does not follow the well known period-doubling cascade as 
a route to chaos (Feigenbaum 1978, 1983). Interruptions of period-doubling bifurca- 
tion sequences by odd-period multiplications have been found in Rayleigh-Bknard 
experiments with liquid helium by Libchaber & Maurer (1982) and have been dis- 
cussed by Arneodo et aE. (1983). Generally, interrupted cascades can occur in complex 
systems not necessarily representable by one-dimensional maps. Efforts to quantify 
the statement that the irregular solutions are chaotic by calculations of the largest 



Nonlinear shear instabilities of alongshore currents 193 

Lyapunov exponent are discussed in Appendix C. It is worth emphasizing the com- 
plexity of the potential vorticity dynamics involved in some of the solutions that show 
regular behaviour in the (KE’ ,EC)  phase plane. That is illustrated by the compli- 
cated deformations in the vorticity fields during the instability events for p = 0.0028 
(figure 4) that result in a regular period-2T limit cycle in the (KE’,EC) plane. 

5. Numerical experiments, n = 3, m = 2,3 
We extend the set of experiments in 94 with n = 3 to domains with moderately larger 

alongshore scales. Two subsets of experiments are run, one with L(Y) = 2(27r/ko) = 

900 m and one with L(Y) = 3(2n/ka) = 1350 m. In these experiments, the fluid is 
initially at rest and the forcing V in (2.13) includes small-amplitude perturbations 
eh(y)  with e = 0.01, 6, = 1, and with J = 2 (3) for L(Y) = 900 m (1350 m). 
This problem corresponds more closely to the time dependence that might occur in 
the oceanographic situation. We note that when the set of experiments in $4 with 
L(Y) = 450 m are conducted in this manner (with J = l),  the large-time asymptotic 
behaviour is qualitatively the same except that the limit cycles are not repeated as 
precisely because of the weak y-dependence in the forcing. As in $4, we vary the 
magnitude of the bottom friction p while all other parameters are held constant. 
We focus attention on a description of the results from the experiments with L(Y) = 

3(2n/k0) = 1350 m and briefly summarize the results with Lo) = 2(2n/ko) = 900 m 
at the end of the section. 

= 337.5 m from different experiments with 
L(Y) = 1350 m are shown in figure 7. It is clear by comparison of these time series 
with those in figure 3, that different physical processes occur here for the smaller 
values of p. For p = 0.0075, however, regular alongshore-propagating disturbances 
with scale 271/h7 and with velocity 2 0.57 m SKI, similar to those found in $4 with 
L(Y) = 450 m, grow to near constant amplitude. This is shown in the u time series 
and in the perspective plot of squared vorticity c2 along x = 90 m as a function of 
y and t in figure 8. The vorticity fields (not shown) reflect propagating disturbances 
at wavelengths 2n/ko that grow and then equilibrate at nearly constant amplitude 
with structure similar to those found with p = 0.0075 and L(Y) = 450 m (figure 4). 
The contour plots of U(x, t )  and ;($ + p) in figure 9 show the rapid development 
in less than an hour of v(x , t )  from E(x, t  = 0) = 0 to a profile close to V , ( x ) .  The 
perturbation kinetic energy density ;($ + ?) builds up more slowly, consistent with 
the behaviour of u (figure 7), and approaches near steady values after about 15 h. The 
differences between U(x, t )  and V,(x) after about one hour are small, but dynamically 
significant as demonstrated by the change in linear stability properties of V(x,  t). 
Growth rates obtained from linear stability calculations with the basic flow equal to 
V(x, t )  at different times are shown in figure 10. As t increases, V(x, t )  evolves from a 
profile that is unstable to one that is stable, but very close to marginal stability. The 
equilibrium of waves of wavelength 27~/k0  at nearly constant amplitude found here 
with p = 0.0075 is in qualitative agreement with the preliminary results reported by 
Dodd & Thornton (1992) based on weakly nonlinear theory. 

For ,u = 0.007, regular disturbances of alongshore scale 2n/ko grow initially. At 
about t = 10 hours, these disturbances change spatial structure as reflected by the 
change in character of the fluctuations in u (figure 7). The initial unstable disturbances 
evolve into a wave group composed of essentially three disturbances with individual 
wavelengths somewhat smaller than 27c/ko and with reduced amplitudes. The wave 
group nature of the propagation at large time is evident in a perspective plot of 

Time series of u at x = 90 m, y = 
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FIGURE 7. Time series of the across-shore velocity component u at x = 90 m, y = = 337.5 rn 

from experiments with different values of p (m s-') (n  = 3, L(Y) = 1350 m). 

squared vorticity c2 along x = 90 m (not shown). The phase velocity of the individual 
disturbances (= 0.55 m s-l) is greater than the propagation velocity of the group 
(2: 0.47 m s-l). As a result, we observe a continuous decrease in amplitude and 
disappearance of the disturbances at the front of the group and a corresponding 
appearance and growth in amplitude of the disturbances at the rear of the group. 

For p = 0.006, regular disturbances of alongshore scale 27c/ko again grow initially, 
but after about t = 5 h, these break down and form a single longer wavelength 
disturbance that evolves into a nearly steady propagating nonlinear wave. This process 
is illustrated in the perspective plot of c2 along x = 90 m for 1.1 = 0.006 in figure 8. The 
breakdown of the initial waves of scale 2n/ko and formation of a single disturbance 
involves selective growth in amplitude and reduction in propagation speed of one of 
the initial waves. A faster moving, smaller amplitude wave overtakes and merges with 
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t (h) 
FIGURE 8. Perspective plots of the squared vorticity l2 (s-*) along x = 90 m as a function of 
the alongshore coordinate y and time t for different time periods from the experiments with 
p = 0.0075 m s-’ and p = 0.006 m s-l ( n  = 3, L(’) = 1350 m). 

the larger amplitude wave. The resulting combined disturbance subsequently overtakes 
and merges with the slower moving, larger amplitude remaining wave. Also illustrated 
in figure 8, is the reduced propagation speed of the resulting nonlinear disturbance 
(w 0.45 m s-l) compared with that of the initial waves of scale 2x /ko  (= 0.57 
m s-’). The changes in the vorticity field during the merger process are shown in 
figure 11 and illustrate the transition behaviour described above. This process of 
vortex amalgamation is clearly different than the orbital pairing observed in free 
shear layers, but may possibly involve a mechanism similar to the ‘vortex draining’ 
instability discussed by Klaassen & Peltier (1989). During the transition there is a 
corresponding change in behaviour of u with time from short-period oscillations 
of increasing amplitude to longer period oscillations of nearly constant amplitude 
(figure 7). The near-steady nature of the resulting propagating nonlinear wave may 
be seen in figure 12. The structure of the vorticity field in the nonlinear wave at 
t = 12 h and t = 16 h shows an offshore bulge of negative vorticity with alongshore 
scale about 400 m at what we will call the front of the wave. This is followed by a 
long tail of about 950 m length with little alongshore variation in c. The behaviour 
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FIGURE 9. Contour plots of B(x,t) (upper figures) and ;(." + p ) ( x , t )  (lower figures) as a 
function of the across-shore coordinate x and time t from experiments with different val- 
ues of p (m s-') ( n  = 3, L(Y) = 1350 m). The contour intervals are A5 = 0.15 m s-', 
Ai(Z + v'2) = A = 0.001 m2 s - ~  for p = 0.0075 and A = 0.005 m2 sp2 otherwise. 

of the flow is also illustrated in the V(x, t )  and i(z + ?) contour plots in figure 9 
where an instability event, similar to those found for p = 0.006 with L(Y) = 450 m 
and shown in figure 5, occurs starting around t = 4 h. Following that event, however, 
the flow behaviour changes and we see development of a weaker and broader V(x,t) 
accompanied by the establishment of perturbation kinetic energy density ;($ + 9) 
that has little variation with time, corresponding to the near-steady nature of the 
propagating nonlinear wave. Profiles of U(x, t) at t = 2 and t = 16 h are plotted in 
figure 10 and compared with Vs(x). Linear stability results in terms of maximum 
growth rates versus wavenumber for these profiles are also shown in figure 10. At 
t = 2 h, V(x,t) is close to V , ( x )  and it has similar linear stability properties. At 
t = 16 h, V(x, t )  has evolved in the presence of the steady nonlinear wave into a profile 
that is stable, but very close to marginal stability. 

For p = 0.0055, the initial growing unstable waves are again regular disturbances 
with alongshore scale 2n/ko. These break down after about 4 h and evolve into two 
larger wavelength nonlinear waves as shown by the (-fields (figure 12). The breakdown 
of the initial instabilities of scale 2n/ko and evolution into two disturbances involves 
selective growth of two disturbances, subsequent reduction in propagation speed 
and merger of one of these with the more rapidly propagating smaller amplitude 
disturbances. The structure of the vorticity field (figure 12) at the front of the two 
nonlinear waves, involving an offshore bulge of negative vorticity, is similar to that 
found at the front of the single wave at p = 0.006. The two nonlinear waves here are 



Nonlinear shear instabilities of alongshore currents 197 

u = 0.0075 p = 0.006 

6- 

0 0.01 0.02 0.03 0 0.01 0.02 0.03 
k (m-*) k (m-l) 

0 100 200 300 400 0 100 200 300 400 

x (m) x (4 
RGURE 10. Results of linear stability calculations for the basic flow V, (x )  and for a(x, t )  at different 
times in terms of growth rate kci versus alongshore wavenumber k from the experiments with 
p = 0.0075 m sri and p = 0.006 m s-' (n  = 3,L(J) = 1350 m). Also shown are the profiles of V S ( X )  
and V(x, t )  at the corresponding times designated by the same line types as kci. 
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FIGURE 11. Contour plots of the vorticity C-fields at different times from the experiment with 
p = 0.006 m s-' ( n  = 3, L(Y) = 1350 m). The zero contour is omitted. Solid (dashed) contour lines 
correspond to negative (positive) values. The contour interval A( = 0.005 s-l. 

less steady than the single wave at p = 0.006, however, as shown by a comparison of 
the time variability in the u time series (figure 7), the ;(." + 3) plots (figure 9) and 
the 5-fields (figure 12). Fluctuations in V ( x ,  t) and ;(u'?+?) on a longer time scale of 
about 2.5 h, reminiscent of the behaviour associated with instability events that was 
found with L(J') = 2n/ko = 450 m, are clearly evident in figure 9. These fluctuations 
may also be seen as modulations of the amplitude of the higher frequency oscillations 
in the u time series (figure 7). The emergence at large time of two disturbances at 
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FIGURE 12. Contour plots of the vorticity [-fields at times t = 12 (top) and 16 h (bottom) from 

experiments with p = 0.006,0.0055,0.003,0.001 m s-l (n = 3,Lb) = 1350 m). Contours as figure 11. 

p = 0.0055 compared with a single disturbance at larger friction ,u = 0.006 and 
single disturbances at smaller friction values p = 0.003 and p = 0.001 (figure 12) 
seems curious. It turns out, however, that at the friction values p = 0.006 and 
p = 0.0055, the large-time behaviour is not unique and may involve either one or 
two waves depending on the initial conditions (and presumably also depending on 
the form of &(y)  (2.13) which is not varied). This is demonstrated by initializing 
additional experiments for ,u = 0.006 and for p = 0.0055 with, respectively, the 
,u = 0.0055, t = 9 h fields and the ,u = 0.006, t = 9 h fields. In both experiments, 
the single or double wave character of the initial field is preserved in a stable fashion 
for the ensuing 12 h length of the experiment. The two-wave state at p = 0.006 has 
time-dependent variations similar to that found in the two-wave state at ,u = 0.0055 
while the single wave state at p = 0.0055 shows near-steady behaviour similar to that 
found in the single wave at p = 0.006. 

At the lower value of p = 0.003, the breakdown of growing initial disturbances with 
wavelength 27z/ko occurs relatively quickly as shown by the behaviour of the u time 
series in figure 7. A long-wavelength nonlinear disturbance develops by about 5.5 h. 
The propagation speed of this disturbance is about 0.27 m s-l and is slower than 
that of the nonlinear wave at p = 0.006 as evidenced by the increased period of the u 
oscillations (figure 7). The propagating nonlinear wave at p = 0.003 has an unsteady 
character that is shown by the time variation of the vorticity fields in figure 12. Also 
evident in the vorticity fields is the increased distance offshore to which the negative 
vorticity fluctuations extend compared with the p = 0.006 case. The irregularity in 
time of the propagating disturbance with p = 0.003 is also indicted by the time 
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variations of the perturbation kinetic energy density ;($ + 3) in figure 9. The 
effects of the time-dependent nonlinear disturbance in broadening and weakening the 
alongshore-average velocity field V(x, t )  compared to Vs(x) are also evident in figure 9. 

For p = 0.001, the behaviour is qualitatively similar to that found at p = 0.003 
except that the propagating nonlinear disturbances are more irregular in time and 
space and generally propagate slower. The vorticity fields (figure 12) show the result 
of increased shedding of vortices and the presence of these previously shed vortices 
at offshore locations up to 500 m from the coast. 

It is instructive to examine and compare aspects of the potential vorticity balance 
in the steady, equilibrated waves of wavelength 27c/ko found for ,u = 0.0075 and in 
the longer wavelength, nearly steady, nonlinear wave found with p = 0.006. For this 
purpose we utilize the decomposition of the potential vorticity (2.20a) q = q + q’ and 
consider the equation (2.22) for q’ transformed to a coordinate system moving at the 
observed speed of the wave c. Accordingly, in terms of the coordinates 

s = t ,  q = y - c t ,  (5.la, 6 )  

(2.22) transforms to 
~~ 

q: + u’qx + (5 - c)q:, + u’qk + u’q:, - (u’q’, + v’qb) 

+ W h )  [ ( U ’ l h L  - V ’ / h ) x  - (u’/h),] + (v/h)v4r’ = 0, (5.2) 
where q replaces y in the V4 operator. 

We consider an alongshore position yo for each wave at large time to and examine 
the balance of terms in (5.2) as a function of x in figure 13. Also shown in figure 13 are 
the values of z,[’,uL, and -ub at yo and to and the balance of terms in equation (2.21) 
for Z j  at to. Calculation of these terms is described in Appendix B. The alongshore 
position yo is chosen to be a location where the vorticity field in the wave has 
interesting structure. For p = 0.0075 we choose yo = 100 m at to = 30 h. This position 
in the wave corresponds approximately to y = 50 m in the similar vorticity field 
at t = 8 h for p = 0.0075 with L(Y) = 450 m (figure 4). For p = 0.006, we choose 
yo = 50 m at to = 20 h which corresponds to about y = 350 m at 16 h (figure 12). 
This location is near the front of the offshore bulge in vorticity at the front of the 
wave. 
- For ,D = 0.0075, the perturbation vorticity 5’ is generally smaller in magnitude than 
i. In addition, -ub is generally small in magnitude compared to u i .  Consequently, 
[’ is almost entirely represented by u:, which is a characteristic of a long wave. For 
p = 0.006, 5’ is comparable in magnitude to c. Also, -u: is comparable in magnitude 
to u: and makes a substantial contribution to [’ between about 150 m and 200 m 
offshore, which is consistent with the impression from the structure of the vorticity 
field. In (5.2) we characterize the degree of nonlinearity present in the wave by the 
relative magnitude of the terms u’ql, +v’q; -(u’qL +v’q;) which represent the advection 
of perturbation potential vorticity q’ by the perturbation velocity components u’ and 
v’. For p = 0.0075, these terms are non-negligible but generally smaller than the other 
terms, possibly corresponding to a weakly nonlinear equilibration. In contrast, for 
p = 0.006 these terms play a dominant role in the balance between about 50 m to 
230 m offshore indicating the presence of relatively strong nonlinear effects. Note 
also that with p = 0.006 the bottom friction terms are smaller relative to the other 
terms than with p = 0.0075. The terms in equation (2.21) for ij show qt N 0 for both 
p = 0.0075 and p = 0.006. Within 20 m of the coast, the biharmonic friction term 
(v/h)V4ij balances (y/h)[(B - T/,)/h],. Offshore of about x = 20 m, the biharmonic 

~ _ _  
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FIGURE 13. The alongshore-averaged vorticity i, the perturbation vorticity c’,vi, and -uL as a 
function of x at alongshore position yo and time to from the experiments with p = 0.0075 m s-’ and 
p = 0.006 m s-’ (n = 3, = 1350 m). Also shown as a function of x are the terms in the potential 
vorticity equation for q’ (5.2) at the same yo and to and the terms in the potential vorticity equation 
for if (2.21). For p = 0.0075, yo = 100 m, to = 30 h and c = 0.57 m s-‘. For p = 0.006, yo = 50 m, 
to = 20 h and c = 0.45 m s-’. 

friction term is relatively small and the dominant balance is given by (2.24) where 
the difference between V and Vs, which corresponds to a broadening and weakening 
of T? relative to Vs (figure lo), is forced by the alongshore-averaged across-shore flux 
of perturbation potential vorticity. 

We turn our attention next to the subset of experiments with L(Y) = 2(27c/ko) = 
900 m. In light of the importance of vortex pairing observed in two-dimensional 
unstable free shear layers and the proposed relation of that behaviour to secondary 
instabilities involving the first subharmonic of Kelvin-Helmholtz instability waves 
(e.g. Ho & Huerre 1984; Klaassen & Peltier 1989), it seems logical to conduct 
experiments here with L(J’) = 2(2n/kO) varying ,u over the same values as in the 
L(J’) = 3 ( 2 x / h )  experiments. Qualitatively similar behaviour is found. 

For p = 0.0075, waves of wavelength 2n/ko grow and equilibrate with nearly steady 
amplitudes as found with L(Y) = 1350 m. The response for p = 0.007 consists of waves 
that grow at wavelength 2n/ko and, for the most part, remain at that wavelength 
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with amplitudes that vary slowly in time. This contrasts with the development of 
smaller amplitude wave group disturbances found at large time with L(Y) = 1350 m. 
For y < 0.006, waves of wavelength 27t/ko grow initially. The amplitudes equilibrate 
with low-frequency modulations and exhibit behaviour similar to that found with 
L(J’) = 450 m. After two or three of the longer period cycles, however, these waves 
break down and evolve into nearly steady or unsteady propagating disturbances with 
alongshore length scale L(J’) = 900 m. 

For y < 0.006, the vorticity fields at large time from the experiments with L(J’) = 
900 m are similar to those found with L(Y) = 1350 m. The structure at the front of 
the disturbances, where the negative vorticity extends offshore, has length scales in 
both the alongshore and across-shore directions that are close to the scales at the 
front of the corresponding disturbances found with L(Y) = 1350 m (figure 12). The 
time variations associated with the offshore vorticity fluctuations at the front of the 
wave for the lower values of y are likewise similar. The major differences occur in the 
greater lengths of the tail regions of the waves found with L(J’) = 1350 m. 

We note that the transition for y d 0.006 from waves of wavelength 27r/ko into 
nonlinear disturbances with larger alongshore scale occurs quite a bit more rapidly 
with = 900 m. Since the perturbations in &(y) (2.13) 
have the same magnitude in the two sets of experiments with different L(J’), this 
suggests that secondary instabilities of the initial disturbances that involve the first 
subharmonic of wavelength 2(2n/k0) (which is not present in the experiments with 

The fact that for y d 0.006 the alongshore scales of the large-time, nonlinear 
disturbances in most of the experiments are found to be equal to the domain scale 
L(Y) leaves unanswered an obvious question concerning the natural scales of these 
disturbances when they are not restricted by the size of the domain. That question is 
addressed in the next section. 

= 1350 m than with 

= 1350 mj do not play a pivotal role in the transition process. 

6.  Numerical experiments, n = 6, rn = 10,12 
In this set of experiments, we utilize domains with alongshore scales that are 

substantially larger than the wavelength of the most unstable linear mode, i.e. rn = 10 
or m = 12 in (2.14). The primary objective here is to obtain information about the 
preferred alongshore scale of the disturbances at the values of y for which they evolve 
into long-wavelength nonlinear waves. The Vs(x)  profile in the forcing (2.13) is that 
with n = 6 so that 27c/ko =180 m (figure 2). Two subsets of experiments are run, 
one subset with L(Y) = 10(2n/koj = 1800 m and another with L(Y) = 12(27c/ko) = 
2160 m. As in $5, in these experiments the fluid is initially at rest and the forcing V in 
(2.13) includes small-amplitude perturbations & ( y )  with 6 = 0.001, b, = I, and with 
J = 10 (12) for I,()’) = 1800 m (2160 m). The magnitude of p is varied while the other 
parameters are held constant at the same values as before. For a given value of y we 
first discuss the results from the experiments with L(J’) = 1800 m and follow with a 
comparison to the corresponding results with L(J’) = 2160 m. 

= 450 m from the experiments with 
L(Y) = 1800 m are shown in figure 14. Corresponding time series of u at x = 90 m, y = 
:Lfy)  = 540 m from the experiments with L(B) = 2160 m are also shown in figure 14. 
For y = 0.017 and L(J’) = 1800 m, nine disturbances of wavelength about 200 m 
grow slowly and eventually equilibrate. These result in high-frequency oscillations in 
u with a period of about 7 min (figure 14). The modulation in the amplitude of 

Time series of u at x = 90 m, y = 
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FIGURE 14. Time series of the across-shore velocity component u at x = YO m, y = iL(Y) = 450 m 
(n = 6, L(y) = 1800 m) and at x = YO m, y = i L ( J )  = 540 m (n = 6, L(') = 2160 m) from experiments 
with different values of p (m s-I). 

u on the longer time scale of about an hour is caused by a continuous large-scale 
spatial variation of the strength of the nine waves. The growth of instabilities at 
wavelengths about 200 m is consistent with the decrease of the wavenumber of the 
most unstable linear mode as p increases (figure 2). In an experiment with p = 0.017 
and L(Y) = 2160 m, we find that ten waves of wavelength 216 m grow and equilibrate 
at a similar amplitude, but without the longer period modulation. Thus, the large- 
scale spatial amplitude modulation found with L(J') = 1800 m is presumably directly 
related to the alongshore scale of the domain even though L ( y )  is relatively large 
compared to 27clh. 

For p = 0.009 and L(Y) = 1800 m, ten waves of wavelength 180 m grow and 
equilibrate after about 2.5 h. Around t = 8.5 h these waves evolve into four nonlinear 
waves with alongshore scales between about 350 m and 500 m. At large time, the 
amplitudes and alongshore scales vary among the four nonlinear waves as shown by 
the vorticity field at t =12 h (figure 15), but they remain reasonably steady in time as 
indicated by the near repeatability of the u time series after t = 11 h (figure 14). The 
vorticity fields in the four dominant waves are qualitatively similar to those found 
previously with n = 3 and L ( y )  = 1350 m in $5 (figure 12) but with smaller alongshore 
scales. There is an offshore bulge of negative vorticity over an alongshore scale of 
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FIGURE 15. Contour plots of the vorticity [-fields at time t = 12 h from experiments with p = 0.009, 
0.006,0.003 m s-l (n = 6, L(y) = 1800 m). The zero contour is omitted. Solid (dashed) contour lines 
correspond to negative (positive) values. The contour interval A[ = 0.005 s-'. 

roughly 200 m at the front of the wave, followed by a more uniform tail region 
with an alongshore scale also around 200 m. In an experiment with ,u = 0.009 and 
L(Y) = 2160 m, we find qualitatively similar large-time behaviour with the formation 
of five nonlinear waves with alongshore scales of about 430 m. In that case, the 
breakdown of the initial waves of length 180 m and the formation of the nonlinear 
waves occurs much earlier, around t = 3 h. 

For ,u = 0.006 and L(Y) = 1800 m, waves of length 180 m grow initially, but very 
rapidly break down into long-wavelength propagating nonlinear waves. The nonlinear 
disturbances form, merge and interact in a complicated manner such that at different 
times two, three, or four separate individual disturbances with alongshore scales 
ranging from about 200 m to 900 m are observed. At t = 12 h, for example, three 
disturbances are present in the vorticity field (figure 15). The changes in the vorticity 
field with time are reflected by the variations in the periods of the oscillations in the 
u time series (figure 14). The nature of the time-dependent change in structure of the 
waves is shown in the perspective plots of i 2 ( y , t )  in figure 16. Two time periods are 
shown. During the first time period (10.5 to 14.5 h), three disturbances evolve into two. 
This occurs through a reduction in amplitude and increase in propagation velocity of 
one of the disturbances followed by a merger at about t = 12.75 h of that disturbance 
with one of the original slower moving ones. During the second time period (16- 
20 h), the two disturbances that resulted at the end of the first period evolve into 
three. It may be seen that small-amplitude faster propagating disturbances form and 
grow in one of the regions between the two initial disturbances. These eventually 
develop into two new finite-amplitude disturbances, one of which merges at about 
t = 19 h with one of the original waves and one of which grows into a separate third 
disturbance. Consequently, in this experiment the number and the alongshore scales 
of the nonlinear disturbances vary in an irregular manner. Similar results are found 
in the corresponding experiment at ,u = 0.006 with L(Y) = 2160 m. 

For p = 0.003 and L(J') = 1800 m, we find initial growth and equilibration of 
waves of wavelength 180 m. After about t = 6 h, these waves break down and 



204 J.  S. Allen, P, A. Newberger and R. A.  Holman 

FIGURE 16. Perspective plots of the squared vorticity 1' (sP2) along .x=90 m as a func- 
tion of alongshore coordinate y and time t for two time periods from the experiment with 
p = 0.006 m sP1 (n = 6, L(J) = 1800 m). 

eventually by t = 9 h form two unsteady propagating nonlinear disturbances with 
alongshore scales that fluctuate around 900 m (figure 15) and with propagation 
velocities that fluctuate around 0.27 m s-'. Generally similar behaviour is found in 
an experiment with p = 0.003 and L(J') = 2160 m, except that the breakdown into 
larger-scale disturbances occurs almost immediately after 2 h. With LO) = 2160 m, 
two disturbances are found most of the time, e.g. around t = 4 h and from t = 7 h 
to t = 14 h. The alongshore scales of these disturbances and the offshore extension 
of negative vorticity at the front of the waves fluctuate more strongly and more 
irregularly in time than with L(Y) = 1800 m. The alongshore scales vary between 
about 700 m and 1400 m. In addition, occasionally, e.g. around t = 6 h and t = 15 h, 
additional disturbances form and grow so that the total number is three or four. 
These evolve, however, back into two large-scale disturbances on a 1-2 h time scale. 

In general, comparisons of the results of the experiments with L(J') = 1800 m 
with those for I,(-") = 2160 show similarity of the major qualitative features of the 
behaviour. The differences found in the specifics of the response indicate that some 
dependence on the alongshore scale of the domain remains. Part of that dependence, 
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FIGUKE 17. Wavenumber-frequency ( k ,  w )  spectra for the across-shore velocity component u(y,  t )  
at x = 90 m from experiments with different values of p (m sP1) ( n  = 6 ,  L(P) = 2160 m). Spectra 
are calculated for the 5 h time period (5-10 h) for p = 0.017 m s-l and for the 10 h time period 
( 6 1 6  h) for p = 0.009, 0.006 and 0.003 m tid1. The spectra are smoothed by averaging over 5 
frequencies. The contours plotted are 1 x 1 x lop5, and 1 x lop6 m2 s - ~ .  

however, is likely due to the unstable nature and corresponding sensitive dependence 
on exact conditions of the evolving flow fields. The results concerning preferred 
alongshore scales of the nonlinear disturbances are similar from both subsets of 
experiments. These scales were found to increase from a range around 350-500 m 
for p = 0.009 to a range around 700-1400 m for p = 0.003, with a regime found for 
p = 0.006 where the scales varied in a time-dependent manner between about 200 m 
and 900 m. In general, the smaller the friction the longer the alongshore scale. 

To obtain a better appreciation of how these nonlinear disturbances might appear 
in data from field experiments, we plot in figure 17 alongshore wavenumber--frequency 
(k, w )  spectra calculated for the across-shore velocity component u(y, t )  at x = 90 m 
from the experiments with L(J') = 2160 m. For p = 0.017, the energy is concentrated 
around k~ = 0.029 m-l and wM = 0.015 s-l, with corresponding wavelength 2n/kM = 

216 m, period 2 n / o ~  = 0.12 h, and phase velocity cAf = coM/klM = 0.52 m SKI. For 
lower values of p, the energy is distributed over a wider range of o and k ,  but is rather 
tightly confined to a narrow region around a line given approximately by o = c M k .  
As p decreases, c M  decreases and the energy distribution moves to lower values of 
w and k .  For p = 0.009,0.006, and 0.003, we find cM = 0.40, 0.34 and 0.26 m s-l, 
respectively. Consequently, the wavenumber-frequency spectra show propagation of 
all these disturbances in a nearly non-dispersive manner, with differentiation of the 
behaviour indicated primarily by the inferrcd propagation velocities and relative 
distribution of energy with o and k. 

7. Summary 
The behaviour of the flow over plane beaches in the idealized, forced, dissipative 

problems considered here depends on the value of the dimensionless parameter Q (2.4), 
which represents the ratio of an advective to a frictional time scale. The dependence 
on a single parameter Q (in the limit R-' << 1) provides considerable economy 
in characterizing the nature of the response. For a given across-shore structure in 
the forcing and given dimensionless alongshore scale of the domain, the range of 
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behaviour of the flow is given by a complete set of solutions for different values of 
Q. Solutions for specific dimensional cases with different values for the beach slope 
b / L ,  the friction coefficient p, or the magnitude of the forcing may be extracted 
at the appropriate value of Q from that solution set (Appendix A). Consequently, it 
is appropriate to discuss the results in terms of variations in Q. 

The steady frictionally balanced alongshore current that would be set up by the 
assumed forcing in the absence of instabilities is linearly unstable for Q less than a 
critical value Qc. Three sets of numerical experiments are conducted to determine the 
dependence of the flow on AQ = Qc - Q and on the alongshore scale of the domain 
L(’) expressed in units of wavelengths of the most unstable linear mode 271/k0. A rich 
variety of different phenomena is found. 

In the first set of experiments, the forcing Vs(x) (2.13b) has n = 3 and L(Y) = 
( 2 n / k O )  = 450 m. We find that for small, positive AQ = Qc - Q, alongshore- 
propagating disturbances grow and equilibrate at nearly constant amplitude with 
propagation velocity close to that given by linear stability analysis. For larger AQ, 
periodic finite-amplitude instability events occur resulting in regular modulations of 
the amplitudes of the propagating disturbances on a longer, several hour time scale. 
As AQ is increased, periodic behaviour is found involving two instability events at 
first, then four, and then six. When AQ is increased further, we find that the events 
and their amplitudes vary irregularly in time. Representation of the flow evolution 
in a phase plane with area-averaged perturbation kinetic energy KE’ and the area- 
averaged energy conversion term EC as coordinates shows that the behaviour of the 
forced dissipative fluid dynamical processes in these experiments has similarities to the 
behaviour found in low-dimensional nonlinear dynamical systems, including the exis- 
tence of non-trivial steady solutions, bifurcation to a limit cycle, two period-doubling 
bifurcations, and irregular chaotic oscillations. We find that the period-doubling cas- 
cade is interrupted to give a bifurcation sequence ( T  + 2 T  + 4T t 6T) before the 
irregular oscillations occur. Although the characteristics of the flow change as AQ 
is increased, the alongshore propagation of fluctuations with scale 2n/ko remains a 
strong qualitative feature of the response. 

In the second set of experiments, the alongshore scale at the domain is extended 
so that Lo) = 2 (2n/ko)  or L(Y) = 3(2n/k0) .  The forcing is (2.13) with n = 3, 
for which Qc = 0.19. The fluid is initially at rest. We find that for positive AQ, 
alongshore-propagating disturbances play a major role in the response of the fluid. 
For most values of AQ, however, these disturbances have a different character than 
we find when the alongshore scale of the domain is restricted to 2n/ko. In the 
subset of experiments with L(>’’ = 3 ( k / k o ) ,  we find that for AQ small and positive, 
fluctuations of wavelength 2n/ko grow and equilibrate at nearly constant amplitude. 
The alongshore-averaged alongshore velocity v(x, t) in the equilibrated state is steady 
and near marginal stability for linear perturbations. It is perhaps worth pointing 
out that if a similar phenomenon occurred in the ocean, an accurate time-averaged 
alongshore current profile obtained from measurements would not be judged unstable 
by a linear stability analysis. For larger positive AQ, waves of wavelengths 2n/k, 
grow initially, but subsequently evolve into nonlinear, finite-amplitude, nearly steadily 
propagating disturbances with alongshore scale equal to the domain length 3(2n/ko).  
These disturbances are characterized by a bulge of negative vorticity, extending 
offshore about 200 m with an alongshore scale of about 400 m, at the front of the 
wave. This is followed by a longer tail region of about 900 m with little alongshore 
variation in vorticity. The alongshore-averaged alongshore velocity E(x, t )  evolves to 
a nearly steady profile that again is near marginal stability for linear perturbations. 
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For increased values of AQ, the disturbances become unsteady with the negative 
vorticity at the front of the wave extending farther offshore and fluctuating in time. 
A range of AQ values is found in which the large-time behaviour depends on 
the initial conditions and may involve a single, nearly steady nonlinear wave with 
alongshore scale 3 (27c/k0) or may involve two less steady waves with alongshore 
scales around (3/2)(2n/k0). In general, the larger the amplitude of the disturbance, 
the slower the propagation speed. In the subset of experiments with L(”) = 2(271/kg), 
similar qualitative behaviour occurs concerning the transition waves of wavelength 
2n/ko into single, nonlinear, propagating disturbances with alongshore scale I,()’). The 
transitions appear to develop less readily in these experiments, i.e. they occur at 
larger time, suggesting that secondary instabilities involving the first subharmonic of 
wavelength 2(271/kg) are not critical components of the transition. 

In the third set of experiments, the alongshore scale of the domain is substantially 
larger than the wavelength of the most unstable linear mode with L(J’) = 10(27c/ko) 
or L(Y) = 12(27c/ko). The objective is to find the preferred alongshore scale of the 
disturbances that evolve into finite-amplitude nonlinear waves. In these experiments, 
we utilize V s ( x )  with y1 = 6 in the forcing (2.13) so that 271/k0 = 180 m and 
Qc = 0.5. The fluid is initially at rest. The dependence of the flow behaviour on 
AQ is qualitatively similar to that found in the second set of experiments. For small 
positive AQ, disturbances with alongshore scales close to 2n/ko grow and equilibrate 
at large time. The equilibrated state may involve a regular spatial modulation or 
irregular fluctuations in space and time of the amplitudes of the disturbances. The 
range of AQ for which the disturbances retain alongshore scales close to 27c/k0 at 
large time is somewhat greater than in the second set of experiments, but Qc is 
greater here also. The general tendency at moderate values of AQ for fluctuations 
that grow initially at wavelength 2x/ko to evolve into more slowly propagating finite- 
amplitude disturbances with alongshore scales greater than 271/k0 is found in this 
set of experiments also. The alongshore scales of the nonlinear disturbances increase 
as AQ increases from around 35C500 m at AQ = 0.28 ( p  = 0.009) to 700-1400 m 
at AQ = 0.44 (p = 0.003). One regime is found at AQ = 0.38 ( p  = 0.006), where 
the nonlinear disturbances continuously form, merge and interact in a complicated 
time-dependent manner such that their alongshore scales vary irregularly in time 
between about 200 m and 900 m. 

In summary, for small positive AQ, we find that the flow at large time typically 
contains equilibrated, steady or unsteady, finite-amplitude disturbances propagating 
alongshore in the direction of the forced current with wavelengths and propaga- 
tion velocities close to those indicated by a linear stability analysis of V S ( X ) .  For 
moderate positive AQ, however, the eventual development of large-scale nonlinear 
finite-amplitude propagating disturbances with smaller propagation velocities appears 
to be a robust feature of the flow response over plane beach geometry with forcing 
of the type (2.13). Returning to the questions raised in the introduction, we note that 
for a considerable range of positive AQ, the flow response is dominated by finite- 
amplitude disturbances of one type or another that propagate alongshore. Although 
the observed behaviour at Duck, NC (Oltman-Shay et at. 1989; Dodd et al. 1992) 
might be interpreted as consistent with that found here for small positive AQ, con- 
clusions involving direct comparisons of model results with the SUPERDUCK data set 
should await model studies with beach topography that includes sand bars. The re- 
sults found here indicate for plane beaches the possible existence in the nearshore surf 
zone of propagating finite-amplitude disturbances associated with shear instabilities 
of alongshore currents with properties not directly related to results of linear theory. 
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Appendix A. Scaling of variables 
Numerical solutions to (2.1) with forcing (2.13) are obtained in dimensional vari- 

ables. The topography h = 0 . 0 5 ~  and the parameters V,, = 1 m s-', L = 90 m, 
ho = 4.5 m, L(") = 1000 m, v = 10 m4 s-l are fixed. Sets of experiments are run 
with different values for the alongshore scale of the domain L(Y). The bottom friction 
coefficient p is varied within the sets of experiments. Dimensionless solutions may be 
recovered by transforming to the starred variables in (2.2). With the other parameters 
held constant, the variation of p gives a set of experiments in dimensionless variables 
for different values of Q = pL/(VsMh0) = 20p, where Q varies linearly with p (m s-l). 
The relative scaling of the dimensional and non-dimensional variables remains simi- 
lar through the set of experiments because the variation of p is only reflected in the 
variation of Q and not in the scaling of the variables in (2.2) or in R-l. 

The non-dimensionalization (2.2) that leads to (2.3) involves choosing the character- 
istic velocity VSM = h ~ F o / ( p o p ) ,  where So is a characteristic force. The dimensional 
experiments here with V , ,  fixed and ,u varied correspond to cases where the forcing 
FO is varied also. Dimensional results for which BO is fixed and p is varied may of 
course be extracted from the present set of experiments transformed to dimensionless 
variables. The new dimensional variables, denoted by hats, are related to the starred 
dimensionless variables by 

( k 9 )  = (X*, Y * ) L  : = t * ~ p c p o / ( h o ~ o ) ,  (A la, b)  

(6, G) = (U*, u * ) h o F ~ / ( p o p ) ,  iz = h*hO, (A k d )  
and 

Q = ,~~Lpo/ (h iFo) ,  R-' = vppo / (hoSL3) .  (A 2a, b)  
In this case, Q varies as p2 and the scaling of the velocity components and the time 

variable both depend on p and change as p changes. The values of R-' also vary 
with p, but that should be unimportant in the limit R-' << 1 (2.6). 

Appendix B. Numerical methods 
The numerical finite-difference approximations and the solution procedures for 

the shallow-water equations (2.1) are discussed in this appendix. To facilitate the 
presentation, the following operators 

h x 4  = [+(x + ;Ax) - 4 ( x  - +AX)] /AX, (B la) 

(B 1b) 
-X 

4 = [+(x + ;AX) + +(x - ;AX)] , 
are defined for both the x- and y-directions. Also, we use the notation 
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The equations (2.1) are solved numerically by time stepping the momentum equa- 
tions (2.lb,c). The pressure p is found from the solution to an elliptic equation that 
ensures the satisfaction of (2. la). The finite-difference approximations are imple- 
mented on a C grid (Arakawa & Lamb 1977). The following centred second-order 
spatial difference scheme is utilized: 

6,[EXu] + 6 , p i Y U ]  = 0, (B 2 4  

+ 6, [h(ax)2] + 6, [FIxYIiyi7'] = -Ex6,p/p0 - FLU - vEXV4u, (B 2b) 

(B 2c) 
XY-,-, --y 4 (E 'u)~  + 6,[(FI 2) u ] + 6,[h(i7y)2] = -Ey6,p/po - p [ ~  - V] - vh V V .  

An equation for p is derived by combining 6,(B2b) + 6,(B2c) and using (B2a): 

p0'  [6,(FIx6,p) + 6,(Ey6,p)] = -6:[h(UX)2] - 2 8 x 6 y ~ x y ~ y i 7 x ]  - 6;[h(Dy)2] 
-y 4 - ~ [ 6 , u  + 6 , ~  - 6,V] - v [Sx(ExV4u) + 6,(h V u ) ] .  (B  3) 

The boundary conditions (2.12), 

u = u, = v x  = v, = o at x = o,L("), (B  4a-d) 

are applied as follows. On a C grid, the variables u and u are defined at x and y 
values 

(B 5a) 

(B 5b) 

u[iAx, ( j  + i )Ay,  t], i = 0 ,..., N("), j = 1 ,..., N(,) ,  

v [(i - ;)Ax, jAy, t)], i = 0, ..., N(") + 1, j = 1, ..., N(y) ,  

where N(") = L(")/Ax, N(y)  = L(J')/Ay, and where, for computational convenience 
in implementing (B4c,d), v is specified on exterior grid points at x = -;Ax and 
x = + $Ax. The boundary conditions (B4) are satisfied by setting 

u(iAx) = V2u(iAx) = 0, (B 6a,b) 

v [(i - $)Ax] = v [(i + ;)Ax], (B 6c) 

(B 6 4  V2u [(i - $)Ax] = V2v [(i + $)Ax], at i = 0, N(,). 

Correct boundary conditions for the pressure equation (B 3) are applied naturally 
by deriving (B3) from (B2a,b,c) in finite-difference form with (B6) incorporated. In 
addition, to obtain a unique solution for p we require 

For the time difference approximations, the time variable is discretized in the usual 
manner t = nAt where n is an integer and At is a constant time step. The notation 
u" = u(t = nAt) is used to denote evaluation of u at time level n. We use the 
second-order Adams-Bashforth time difference scheme where, for example 

(B  8) u"+' = un + iAt(3uF - uf-'). 

At general times with u , v , p  known at level n and previous levels, un+' and u"+l are 
found from the time difference scheme, and then p"+l is found from the solution to 
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(B 3). At the initial time t = 0, uo and vo are specified consistent with (B 2a) and po is 
found from (B3). A forward step is used in place of (B8) for n = 0. 

For most of the numerical experiments, we use a uniform (x,y) grid with Ax = 
Ay = 5 m. The adequacy of this grid resolution is assessed in additional experiments 
with n = 6 and L(Y) = 3(2x/ko) = 540 m by comparison of solutions obtained 
for p = 0.011, 0.006, and 0.003 with Ax = Ay = 5 m to those obtained using the 
same parameter values, but with the grid size reduced to Ax = Ay = 2.5 m. The 
same behaviour is found in the corresponding solutions, including the evolution of 
waves, growing initially at scale 2n/ko, into larger wavelength nonlinear disturbances 
(two disturbances develop for ,u = 0.011 and one for p = 0.006 and 0.003). The 
transitions occur in a similar manner at essentially the same times to larger wavelength 
disturbances with similar characteristics. Some quantitative differences exist, but 
these are not inconsistent with variations expected in unstable flow fields. We also 
investigated the effect of changing the relative phase of the cosine components in the 
perturbation forcing (2.13~). Experiments were run with n = 3, L(Y) = 2(2n/ko) = 
900 m, ,u = 0.0055, and with the phase 81 of the ~ h l  cos [(2ny/L(4’)) + el] term 
varied so that 01 = in ,  i n  In, where 81 = 0 corresponds to the original experiment. 
Essentially the same behaviour is found. Qualitatively similar transitions from two 
waves to one wave result with some differences present in the details and timing of 
the transitions. 

For calculation of the terms in the potential vorticity equations (5.2) and (2.21), we 
use 41, = 41 and the approximations 

’ 4  

where 41 is obtained from the sum of the terms on the right-hand side of (BlO), 
and 

where 41 is obtained from the sum of terms on the right-hand side of (B 11). 
The spatial difference scheme in (B 10) involves centred second-order approxima- 

tions to the terms in (5.2). It is not necessarily precisely equivalent to the finite- 
difference form of the potential vorticity equation derived in difference form from 
(B2). Nevertheless, 4; obtained from (B 10) is found to be extremely close to 4;  cal- 
culated from u’ and Y’ after time stepping (B 2) with (B 8). This indicates that use of 
(B10) is satisfactory for the evaluation of the balance of terms in (5.2) at any given 
time. Similar remarks apply to (B 11). 

Finite-difference methods are also utilized to solve the linear stability problem (3.4). 
The variable $(x) is defined at the same x grid points as u ( B 5 a )  while V,(x) and 
h(x) are defined at the same interior x points as v (B5b) .  The following centred 
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second-order difference scheme is utilized for (3.4) : 

L 

(B 12) 
Equation (B 12) is written so that the x finite-difference approximations are consistent 
with those implied by the derivation of (B 12) from the difference equations (B 2a,b,c) 
after linearization about zi = Vs(x). The boundary conditions (3.5) are 

@(iAx) = 0, i = 0, N c x ) .  (B 13) 

A@ = ~ 8 4 ,  (B 14) 

B-'A@ = c@, (B 15) 

Equations (B 12) and (B 13) lead to a matrix equation, 

where A and B are tridiagonal matrices. From (B14) we obtain 

which may be readily solved for the eigenvalues c and corresponding eigenvectors 4. 
The grid resolution utilized is the same as in the numerical experiments, Ax = 5 m. 

Appendix C. Lyapunov exponents, IZ = 3, rn = 1 
For ,u < 0.0025, the behaviour of solutions found in 94 from experiments with 

n = 3 and Ley) = 450 m as represented in the (KE',  E C )  plane (figure 6) appears to be 
chaotic. We examine the possibility of verifying that impression and of quantifying to 
some extent the degree of chaos present in these solutions by calculation of the largest 
Lyapunov exponent. We utilize a procedure called the standard method (Bennettin, 
Galgani & Strelcyn 1976; Wolf et al. 1985; Goldhirsch, Sulem & Orszag 1987) applied 
to a system of partial differential equations (e.g. Sirovich & Deane 1991). 

The following linearized equations for perturbations (ii, D ,  17) about solutions (u ,  o, p )  
to (2.1) are used: 

(C la) 

(C 1b) 

(C 1c) 

(hii), + (hv"), = 0, 

(ha), + 2(hiiu), + (hiio), + ( h u ~ ) ,  = -hp, /po - rii - vv4ii, 

(hv"), + (hiiiv), + (huD), + 2(hv"iv), = -hp,/po - rv" - vV48. 
The norm is based on area-averaged kinetic energy, 

Solutions of (C 1) for ( i i , D ,  77) are calculated simultaneously with the calculation of 
solutions of (2.1) for (u ,u ,p) .  The initial conditions for (ii,i7) at t = to are arbitrary. 
We take 

ii = 0, C = 0.01 VS(X)  at t = to. (C 3% b)  
The variables (Li,v",p) are rescaled to reduce their magnitudes at times when 
increased so that E 3 5.5 m3 s - ~ .  

has 
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FIGURE 18. The calculated value of A, ( t )  in (C4h) as a function of ( t  - to)-’ for the time period 
40-137 h from the experiment with p = 0.001 m s-l (n = 3, L(Y) = 450 m). The linear regression 
line is also shown. 

The largest Lyapunov exponent in the kinetic energy norm (C2) is given by 

AIL = lim A l ( t ) ,  
t-tm 

where to is the initial time, t ,  are the times when (fi,ij,p) are rescaled, t, is the 
time of the last rescaling, t > t ,  2 to, and m’(tj) are the rescaled values of E ( t j )  

(except that =’(to) = m(to)). Goldhirsch et al. (1987) have shown for n-dimensional 
dynamical systems that 

Al(t) - + ( t  - to)-* [hl + 51(t)] as t + co, (C 5 )  

where 61 is a constant and rl(t) is a noise term. We find that the calculated values of 
A, ( t )  have behaviour consistent with (C5) and thus we utilize (C5)  to obtain estimates 
for AIL. 

Calculated values of &(t)  for the experiment with p = 0.001 are shown in figure 18. 
The calculation of (fi,ij,p) is started at to = 9 h, after initial transient adjustments 
in (u , v ,p )  have taken place (figure 3), and continued to t = 137 h. In figure 18, 
A1 is plotted as a function of ( t  - to)-1 for the time period 4C137 h during which 
the asymptotic behaviour (CS) is observed. Based on (C5), an estimate ( I l L )  for AIL 
is obtained by linear regression of A l ( t )  on ( t  - to)-’ during this time period. That 
least-squares straight-line fit is also plotted in figure 18 and the zero intercept gives 
11, = 0.630 f 0.024 h-’. The positive value of I lL  indicates that the solution for 
p = 0.001 is indeed chaotic. The implied time scale is 

Similar slow convergence of i l ( t )  was found in additional experiments at other 
values of p. Although the observed tendency was always toward I , ,  > 0 for the 

N 1.59 h. 
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visually irregular solutions and toward X I L  N 0 for the limit cycles, the calculations 
were not carried out to large enough times to obtain good estimates of AIL .  It is clear 
that this procedure could be consistently applied to all the experiments in this set 
with different values of p. However, because of the large computation times required 
to do so and the secondary nature of these results, it was decided not to pursue that 
aspect of the problem further in this study. 
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